Wir helfen Unternehmen seit 17 Jahren,
bessere Software zu finden
Vertica
Was ist Vertica?
Die Vertica-Analytics-Plattform wurde aus der ersten Codezeile für Big-Data-Analysen entwickelt. Es ist für den Einsatz in Data Warehouses und anderen Big-Data-Workloads konzipiert, bei denen Geschwindigkeit, Skalierbarkeit, Einfachheit und Offenheit für den Erfolg von Analysen entscheidend sind. Vertica setzt auf eine getestete, zuverlässige, verteilte Architektur und spaltenartige Komprimierung, um eine unglaublich hohe Geschwindigkeit zu erzielen. Eine vereinfachte Lizenz und die Fähigkeit, überall eingesetzt zu werden, machen das Leistungsversprechen hinsichtlich der Big-Data-Analyse aus.
Wer verwendet Vertica?
Das Unternehmen wendet sich an Nutzer älterer Technologien, die die Skalierbarkeit und Leistung ihres Data Warehouse verbessern möchten.
Du bist nicht sicher, ob Vertica das Richtige ist?
Mit einer beliebten Alternative vergleichen
Vertica
Bewertungen über Vertica
Database Management tool
Vorteile:
One of the best SQL database management tool. A good solution to store and manage data.
Nachteile:
I have nothing particular to say against this tool.
Vertica - Fastest MPP database to build data warehouses !
Kommentare: MPP database to build good enterprise data warehouse.
Vorteile:
The best MPP database one can get to build analytical data warehouses . The columnar database architecture helps to query the data from the databases very quickly and efficiently . The dimension modeling made easy with Vertica.
Nachteile:
The GUI of the Vertica interface definitely needs improvement. The node manage can also be done better to perform snowflake architecture querying.
In Betracht gezogene Alternativen:
Smart database management tool
Vorteile:
The robustness we get by using Vertica over other database management tools is a real game changer. We get stream of high volume data and the data needs to be processed at a rapid rate to keep up with the processes in the pipeline. Here, Vertica delivers on the expectations.
Nachteile:
While Vertica is robust, there are data size limitations. After a certain threshold, the software breaks! Although we are able to work around and make the floorplans such that this doesn't hamper live processes, but the data size limitations can kick-in.
In Betracht gezogene Alternativen:
Best Analytical Database I have ever used
Kommentare: I'm using vertical as a analytical dB for twitter sentiment analysis. I have used Flume to get twitter data and use R to move the data from Hadoop to vertica DB and do analytical function and project the data in tableau.
Vorteile:
Analytical features that is available with this DB. Ease of use with Text User Interface and UI. Deployment is very fast and easy to do. Integration support with almost all top ingress and egress platform like. Apache Kafka, Flume, Hadoop etc. Very efficient and easy to deploy multinode cluster.
Nachteile:
Nothing I can think of, I was having node health issue alert even when the node was online. I need to upgrade to latest version and hope that issue has been addressed.
light weight platform that works very well
Kommentare: We were looking for an analytics platform that can work concurrently with hadoop clusters that was focused on performance and could also be inter-changeably used as a data processing engine.
Vorteile:
It is light weight and nimble but at the same time is good on performance - the fact that it is column store without the real need for indexing makes it easier to get started and then the storage requirement is also much smaller thanks to coding schemas and algorithms.
Nachteile:
for me, the biggest issue was the fact that it really affects performance when we try to run many large concurrent queries - I wish there was a solution to this. In addition, initial cost of investment to get started on Vertica may discourage SMB's.