Google Cloud ML Engine

Google Cloud ML Engine

von Google

Was ist Google Cloud ML Engine?

Managed service for creating ML solutions. Provides ML model building and training, predictive analytics, and deep learning.

Google Cloud ML Engine – Details

Google

http://www.google.com

Google Cloud ML Engine – Preisübersicht

Google Cloud ML Engine bietet keine kostenlose Testversion. Weitere Preisinformationen für Google Cloud ML Engine findest du unten.

Spotlight_media_placeholder

Gratis Testen

Nein

Google Cloud ML Engine Funktionen

Machine Learning Software
Deep Learning
ML-Algorithmusbibliothek
Modell-Training
NLP
Prädiktives Modellieren
Statistische / mathematische Werkzeuge
Visualisierung
Vorlagen

Google Cloud ML Engine – Nutzerbewertungen

Zeigt 5 von 77 Nutzerbewertungen

Gesamt
4.7/5
Benutzerfreundlichkeit
3.9/5
Kundenservice
4.2/5
Funktionen
4.6/5
Preis-Leistungs-Verhältnis
4.8/5
Jose antonio M.
Technical Support Engineer
Telekommunikation, 201-500 Mitarbeiter
Verwendete die Software für: Mehr als 2 Jahre
  • Overall Rating
    5/5
  • Benutzerfreundlichkeit
    5/5
  • Eigenschaften & Funktionalitäten
    5/5
  • Kundenbetreuung
    5/5
  • Preis-Leistungs-Verhältnis
    5/5
  • Likelihood to Recommend
    10/10
  • Quelle des Nutzers 
  • Bewertet am 19.7.2019

"Best Machine Learning Framework"

Vorteile: I have implemented this on my personal projects, and it gives the desired results, as a Google product it has tons of documentation, so we can easily learn how to use it. The support community has a lot of good resources where everyone can go ahead and ask or search for the answers.

Nachteile: The learning curve, as all the frameworks we needed to search for documentation. Besides that this product it's awesome.

  • Quelle des Nutzers 
  • Bewertet am 19.7.2019
Ben W.
Software Engineer
Computer-Software, 13-50 Mitarbeiter
Verwendete die Software für: 1-5 Monate
  • Overall Rating
    5/5
  • Benutzerfreundlichkeit
    4/5
  • Eigenschaften & Funktionalitäten
    4/5
  • Kundenbetreuung
    4/5
  • Preis-Leistungs-Verhältnis
    5/5
  • Likelihood to Recommend
    9/10
  • Quelle des Nutzers 
  • Bewertet am 27.9.2019

"Relatively Straightforward Deep Learning Framework"

Kommentare: Human pattern recognization, image recognization. Habits and trends.

Vorteile: The 2.0 version is easy to set up and there are a lot of APIs that are integrated for using various programming languages to do the same thing. I personally have been using python with this application and have had very little problems getting going. There are a lot of tutorials on getting started, some good data available for free to assist with the learning process. Everything can be run locally which makes it easy to expand on-site. Cloud options are also affordable.

Nachteile: The learning curve is a bit steep. This isn't specifically an issue because of TensorFlow itself, the idea of neural networks are not simple. TensorFlow has made improvements on 2.0, that make it easier to use compared to previous versions.

  • Quelle des Nutzers 
  • Bewertet am 27.9.2019
Silviu O.
General Manager
Computer-Software, 2-10 Mitarbeiter
Verwendete die Software für: 6-12 Monate
  • Overall Rating
    5/5
  • Benutzerfreundlichkeit
    5/5
  • Eigenschaften & Funktionalitäten
    5/5
  • Kundenbetreuung
    5/5
  • Preis-Leistungs-Verhältnis
    5/5
  • Likelihood to Recommend
    10/10
  • Quelle des Nutzers 
  • Bewertet am 6.1.2020

"A great foundation for Machine Learning "

Kommentare: TensorFlow is a great initiative and a great product. It can be intimidating at first, but once mastered it can offer a great advantage. The best part is that it covers a great range of machine learning use cases from supervised to unsupervised learning and great support for lots of languages and integration. Great community support and a great vision ahead.

Vorteile: First of all, it's free. Secondly, being developed by Google it integrates easily with Google ML the other products. At the time of its release, it has come with great enthusiasm thus it has a great community build around it.

Nachteile: It is fairly difficult at first, as it brings the whole complexity of working with machine learning. It is very resource-driven and thus the only viable option is using it in the cloud.

  • Quelle des Nutzers 
  • Bewertet am 6.1.2020
Verifizierter Rezensent
Software Engineer
Computer-Vernetzung, 10.001+ Mitarbeiter
Verwendete die Software für: Mehr als 1 Jahr
  • Overall Rating
    5/5
  • Benutzerfreundlichkeit
    5/5
  • Eigenschaften & Funktionalitäten
    4/5
  • Kundenbetreuung
    4/5
  • Preis-Leistungs-Verhältnis
    5/5
  • Likelihood to Recommend
    9/10
  • Quelle des Nutzers 
  • Bewertet am 14.11.2019

"Google Cloud ML Engine review"

Kommentare: In constructing ML project at first, it is run by the local hardware platform Tensorflow GPU version, so that at the time of training can speed up a lot, but because of the high cost of GPU, when a project order of magnitude increases, the training time of exponential growth, if want to reduce the time, only through optimization algorithm or hardware.After that, I moved the whole project to the cloud platform for operation. Of course, there was also a problem. The resources of Aliyun were all based on fixed configuration to determine different prices.Finally, I migrated to Google Cloud ML Engine, which was cheap and perfectly compatible with other Google products, such as Cloud Storage, Cloud Dataflow, and Cloud Datalab.For the extension of the project and late derivative, provides a great convenience.

Vorteile: It doesn't take up any of my local computer resources, just throw a command and let the Google cloud run when I need to run, and it doesn't block any of my other work.
The software provides mainstream training model, prediction model, mainstream ML framework to accelerate the efficiency of our project development.
Low price, suitable for early learning and research.

Nachteile: The threshold of software use is relatively high, and the background of Python or Tensorflow is required, so it is difficult to get started.

  • Quelle des Nutzers 
  • Bewertet am 14.11.2019
Verifizierter Rezensent
Team Manager, Recruiter, developer and Human Resources
Finanzdienstleistungen, 13-50 Mitarbeiter
Verwendete die Software für: 6-12 Monate
  • Overall Rating
    2/5
  • Benutzerfreundlichkeit
    1/5
  • Eigenschaften & Funktionalitäten
    2/5
  • Kundenbetreuung
    4/5
  • Preis-Leistungs-Verhältnis
    4/5
  • Likelihood to Recommend
    2/10
  • Quelle des Nutzers 
  • Bewertet am 3.12.2018

"Overhyped application"

Kommentare: I use tensorflow for machine learning apps to find correlations in the market, but the app has let me down and I have since moved on to other libraries, as tensorFlow was simply to difficult to use.

Vorteile: Tensorflow is a good library for machine learning, but only for more experienced developpers.

Nachteile: It is very hyped by the community, but has a teap learning curve and is hard to learn. So the app is not beginner friendly, but also is't the best library for high level machine learning.

  • Quelle des Nutzers 
  • Bewertet am 3.12.2018