Wir helfen Unternehmen in Deutschland
seit 15 Jahren bei der Softwareauswahl

KNIME Analytics Platform

KNIME Analytics Platform

Was ist KNIME Analytics Platform?

Mathematische und statistische Funktionen, Workflow-Steuerung, erweiterte Prognose, maschinelle Lernalgorithmen und weitere Funktionen für Datenwissenschaftler.

Wer verwendet KNIME Analytics Platform?

Nicht vom Anbieter bereitgestellt

KNIME Analytics Platform Software - 1
KNIME Analytics Platform Software - 2
KNIME Analytics Platform Software - 3
KNIME Analytics Platform Software - 4
KNIME Analytics Platform Software - 5

Du bist nicht sicher, ob KNIME Analytics Platform das Richtige ist? Mit einer beliebten Alternative vergleichen

KNIME Analytics Platform

KNIME Analytics Platform

4,6 (25)
Keine Preise gefunden
Kostenlose Version
Kostenlose Testversion
31
5
4,5 (25)
4,7 (25)
3,9 (25)
VS.
Startpreis
Preisoptionen
Funktionen
Integrationen
Benutzerfreundlichkeit
Preis-Leistungs-Verhältnis
Kundenservice
Keine Preise gefunden
Kostenlose Version
Kostenlose Testversion
21
Keine Integrationen gefunden
4,3 (23)
4,0 (23)
4,5 (23)
Die grünen Bewertungsbalken geben an, welches Produkt gemessen an der Durchschnittsbewertung und der Zahl der Bewertungen am besten abschneidet.

Weitere gute Alternativen zu KNIME Analytics Platform

RapidMiner
Am besten bewertete Funktionen
Für dieses Produkt wurden noch keine Funktionen durch Nutzer bewertet.
Talend Data Fabric
Am besten bewertete Funktionen
Datenerfassung und Übertragung
Datenvisualisierung
ETL
DataRobot
Am besten bewertete Funktionen
Modell-Training
Prädiktive Analytik
Verarbeitung natürlicher Sprache
Microsoft Power BI
Am besten bewertete Funktionen
Berichterstattung / Analyse
Daten-Connectors
Datenvisualisierung
IBM SPSS Statistics
Am besten bewertete Funktionen
Berichterstattung / Analyse
Berichterstattung und Statistik
Statistische Analyse
SAS Enterprise Miner
Am besten bewertete Funktionen
Datenextraktion
KI/Maschinelles Lernen
Modellierung & Simulation
Alteryx Designer
Am besten bewertete Funktionen
Daten-Import / -Export
Daten-Vermischung
Datenbereinigung
Centralpoint
Am besten bewertete Funktionen
Für dieses Produkt wurden noch keine Funktionen durch Nutzer bewertet.
MicroStrategy Analytics
Am besten bewertete Funktionen
Daten-Connectors
Daten-Identifizierung
Datenvisualisierung

Bewertungen über KNIME Analytics Platform

Durchschnittliche Bewertung

Gesamt
4,6
Benutzerfreundlichkeit
4,5
Kundenservice
3,9
Funktionen
4,4
Preis-Leistungs-Verhältnis
4,7

Nutzerbewertungen nach Unternehmensgröße (Angestellte)

  • <50
  • 51-200
  • 201-1.000
  • >1.001

Bewertungen nach Punktzahl finden

5
60%
4
40%
Rochelle
Rochelle
Analytical and Modelling Analyst in Philippinen
Verifizierter Nutzer auf LinkedIn
Informationstechnologie & -dienste, 10.000+ Mitarbeiter
Verwendete die Software für: 6-12 Monate
Herkunft der Bewertung

Well created open source for data analysis!

5,0 letztes Jahr

Vorteile:

One of the pros is of course doesn't require license fee. It is also an open source that can connect to Python and R that is capable of customization. Need to mention also the good community support.

Nachteile:

It took time to understand the functionalities and familiarize the user interface.

Ferhat
Data Warehouse Developer in Türkei
Informationstechnologie & -dienste, 5.001–10.000 Mitarbeiter
Verwendete die Software für: Mehr als 2 Jahre
Herkunft der Bewertung

In Betracht gezogene Alternativen:

Data Science 101 Platform for non-IT people

4,0 vor 4 Jahren

Kommentare: It was the tool I learned the Data Science in the first place. So it is really good and intuitive with its graphical interface. For example you understand train-test split very well because you literally see the split as you work on it. As I progressed and needed more functions and more custom solutions, I started using Python scripts and solved it like that. So it gave me all these abilities.

Vorteile:

- Its ease of use makes it possible for non-IT, non-developer, non-CS background people to make data manipulation, preprocessing, mining, visualization and modelling. - It has a graphical interface with nodes and connections so that you don't need to know Python/R to make predictive models or association rules/recommendation systems. - There's a vast library of functions - Even more functions are created by the community so non-existing customized functions are created by the community, via existing functions. - The visual flow of data makes it easy to understand and interpret it. - It teaches the CRISP-DM methodology in an intuitive way thanks to its graphical user interface - It can connect to SQL and similar servers so that the data can be read directly. - It is possible to write own Python/R script for custom needs.

Nachteile:

- Custom needs are hard to carry out. - Functions have limited abilities and parameters - Data visualization is weak and relatively primitive - Model development is easy but deployment is hard - It is very slow unfortunately and I think this is KNIME's most important drawback

Verifizierter Rezensent
Verifizierter Nutzer auf LinkedIn
Gesundheit, Wellness & Fitness, 5.001–10.000 Mitarbeiter
Verwendete die Software für: 6-12 Monate
Herkunft der Bewertung

In Betracht gezogene Alternativen:

Solid Platform for Small Datasets and Broad Data Connectivity

4,0 vor 4 Jahren

Kommentare: The two main reasons we used KNIME were to process and prep data, then to conduct machine learning by training models and processing predictions. KNIME is great with data prep and blend as long as the data set is small to medium in size (< 4GB). There were areas where we struggled and that was when models were more complex (> 50 variables) and being able to deploy and schedule jobs. We had to download JDBC drivers for our database connections, which was not something we had to do with other platforms.

Vorteile:

There is a wide range of tools to process and prep data in the platform natively and additional tools that can be download within the platform. The ability to customize the settings for most of the tools allows the user to adjust the output. Even more technical settings, like hyperparameter tuning, can be done in the tool UI. There are numerous input and output options and types.

Nachteile:

Pulling in very basic files, like Excel spreadsheets can be a bit challenging where other platforms handle files with ease. Also, database connections are not seamless. The Java memory errors also limit the size of data that can be processed without making manual adjustments to settings. Lastly, not being a cloud-based platform, processing big data is very time-consuming.

Sasha
Product Lead in Deutschland
Informationstechnologie & -dienste, 5.001–10.000 Mitarbeiter
Verwendete die Software für: Mehr als 1 Jahr
Herkunft der Bewertung

Using KNIME for reporting

5,0 vor 3 Monaten

Kommentare: Good and would recommend to non technical professionals as well

Vorteile:

KNIME allowed me to pull data from large google sheets and manipulate them in a clear and easy way. The visual representation of each node makes it really easy to use and understand even for people without a background in data analytics. The KNIME website also provides a lot of resources on using the platform

Nachteile:

Very large google sheets containing a lot of data cannot always be extracted due to the size.

Verifizierter Rezensent
Verifizierter Nutzer auf LinkedIn
Hochschulbildung, 51–200 Mitarbeiter
Verwendete die Software für: Kostenlose Testversion
Herkunft der Bewertung

In Betracht gezogene Alternativen:

Great for all types of data scientists

5,0 vor 4 Jahren

Kommentare: I have had a very positive experience with KNIME and like it a lot more than other drag and drop machine learning tools I have tried out.

Vorteile:

Some drag and drop tools for machine learning are really limited, but KNIME is not. There are a ton of capabilities of the tool that are built in, and there are even more that are available online, like AutoML. It gives citizen data scientists the ability to create good models without knowing a programming language, and it increases the bandwidth of actual data scientists by allowing them to easily create more models and experiments.

Nachteile:

Of course, it is more limited than a programming language, and if you're familiar with building models programmatically, there is a learning curve that will slow you down and limit you at first.