Wir helfen Unternehmen seit 17 Jahren,
bessere Software zu finden
Was ist Datalore?
Datalore Enterprise ist eine Data-Science-Notizbuchplattform für Teams. Die Lösung läuft in Browsern, ist Jupyter-kompatibel und bietet intelligente Coding-Unterstützung für Python-, SQL-, R- und Scala-Notizbücher. Teams können Notizbücher per Link teilen, sie gemeinsam in Echtzeit bearbeiten und Projekte in Arbeitsbereichen organisieren. Datalore Enterprise unterstützt S3- und SQL-Datenquellenverbindungen direkt aus dem Editor. Um Forschungsergebnisse zu teilen, können Datenwissenschaftler Notizbücher in Berichte umwandeln und sie mit Stakeholdern teilen.
Wer verwendet Datalore?
Datalore Enterprise wurde für Datenwissenschafts- und Datenanalyseteams entwickelt, die mit Python, SQL, R oder Scala arbeiten und eine Datenwissenschaftsplattform in einer privaten Cloud oder on premise hosten möchten.
Wo kann Datalore bereitgestellt werden?
Über den Anbieter
- JetBrains
- 2000 gegründet
Support für Datalore
- Chat
Sprachen
Englisch
Datalore Kosten
Startpreis:
- Ja, kostenloser Test verfügbar
- Ja, Gratisversion verfügbar
Datalore bietet eine Gratisversion und eine kostenlose Testversion. Die kostenpflichtige Version von Datalore ist ab 0,00 $ verfügbar.
Preismodelle Kostenlose TestversionÜber den Anbieter
- JetBrains
- 2000 gegründet
Support für Datalore
- Chat
Sprachen
Englisch
Datalore – Videos und Bilder
Datalore Funktionen
Bewertungen über Datalore
It will help a lot in your company
Kommentare: I'm very satisfied with the product, always tell about when I meet people that works as data analysts.
Vorteile:
The features i mostly use is being able to schedule your notebooks, saving them in the cloud, being able to share a link to people that can help you in real time and the jetbrains algorithm to help me write my code. These features make my work very easier since I don't have to worry about running the scripts or setting up an airflow server.
Nachteile:
Sometimes the kernel will just bug and you'll have to restart it but it never happens on scheduled notebooks and if it bugs you can always restart it with the click of a button so it's not annoying at all, and it happens very few times.
In Betracht gezogene Alternativen: Apache Airflow
Gründe für den Wechsel zu Datalore: Because I am already used with JetBrains software like PyCharm and DatSpell.
Datalore for myself
Kommentare: It is good, especially for package management and reporting
Vorteile:
Easy to manage python packages, it saves a lot of time
Nachteile:
Fine grade permission management on sharing notebooks and reports, I think most enterprise companies require this
In Betracht gezogene Alternativen: Looker und Google Data Studio
Warum Datalore gewählt wurde: Audit control issue, dashboard issue
Gründe für den Wechsel zu Datalore: Internal requirements, audits, permission control and so on
Good tool but occasionally unreliable
Kommentare: God, but they need more storage space... and make sure that files over the storage limit can somehow be retrieved even if for a short while.
Vorteile:
Ability to work across windows and mac environments; working in the cloud provides reliability and peace of mind... which is not the case with personal machines.
Nachteile:
I lost data; Looks like, if the size is large, it doesn't back up the data... and there is no way to access it. I did these analysis that took like 30 hours of computing. It was a jsonl file; when I tried to get it into csv format, since the files were so large, it never saved anything. Proved to be a waste of time.
Incredibly useful jupyter-like environment
Kommentare: I love datalore - it's made my life so much easier, taking care of the tasks I normally dread like setting up remote machines or scheduling tasks. And if you come from the pycharm environment, you won't be missing the top notch code completion functionality. It's also great that signing up to it with a free account is easy and seamless for people I want to share notebooks with (I am on the professional tier)
Vorteile:
Really easy and intuitive environment which makes settting up, sharing and collaborating on apps a breeze. Great for very quick prototyping. Their chron feature is fantastic too. Code completion is excellent.
Nachteile:
I wish I could integrate with local files better in a programmatic way, rather than having to upload them manually.
GP uses Datalore
Vorteile:
- option to use GPU- performance tiers- very fast
Nachteile:
- some of the visuals does not work properly (graphviz)- Dash cannot be open separately for preview, needs to be saved instead- profile does not remember installed API, each machine restart requires to reinstall them