Wir helfen Unternehmen seit 18 Jahren,
bessere Software zu finden
Über Blossom Sky
Unsere Data und AI Plattform arbeitet zwischen bestehenden (und zukünftigen) Technologien und vereint mehrere Data Lakes in einer AI-Analyseplattform.
Nicht verfügbar
Nicht verfügbar
Nutzerbewertungen filtern (14)
Nutzung
Sortieren nach
Nutzerbewertungen filtern (14)
Verteilte Analyseprozesse einfach gemacht
Vorteile:
Es muss nur eine Zeile Java Code eingefügt werden, keine aufwändiges Anpassen von Queries für die unteschiedlichen Endsysteme
Nachteile:
Im Moment noch sehr tech lastig, die UI braucht noch etwas
Antwort von databloom
vor 3 Jahren
Thank you for choosing Databloom Blossom Platform. We work on a new user interface, which will be available for beta customers end of Q1/22.

Gaining insights from our data with Blossom
Kommentare: Blossom provides a middleware to run any data flow task on different platforms.
Vorteile:
I could execute my spark job on Flink by changing only one line of code. I also liked a lot the optimizer that can select the platform based on a cost model.
Nachteile:
I would like to be provided with better documentation
Federated ML and Data Migration
Kommentare: Simple, easy and pretty rock solid. Unique in the market
Vorteile:
It's an open source product, and pretty solid and stable. The simplicity to integrate - just add 3! lines into your _already_ existing code, and Blossom does the rest.
Nachteile:
It is developer stage. Power Users will love the stack, but more occasional users need a few hours to understand the concept. And the documentation is pure developer focused, which needs to be improved.
Blossom Review
Vorteile:
What I like the most about this platform is its ease of use. One has to only express the business logic within its API, and then the platform optimizes for the underlying system usage. This way one does not need to implement system-specific details.
Nachteile:
The initial configuration and deployment with different software versions of underlying system can be challenging. However the issues got resolved after communication. Furthermore, it would be beneficial to add support (connectors) for more systems.
Antwort von databloom
vor 3 Jahren
Thank you, we are working on a new interface to integrate computation frameworks more easily.
First tool that automatically chooses platform
Vorteile:
Blossom provides a unique software that can automatically choose in which platform a task has to be executed to achieve best performance. It is also really cool to write your application code once and by changing only one line of code have it executed in a different platform (eg., Spark, Flink or standalone Java) regardless of where the data is stored.
Nachteile:
Better documentation would ease deployment.
Convenient and Feature rich data Analytics tool
Vorteile:
Automated determination and training of Source data. Support for Multi Cloud with a single tool. Low code and easy to integrate.
Nachteile:
Nothing as of now, we are still evaluating for a product.
Blossom review
Kommentare: Blossom allows you to focus on your application as it handles where a task will be executed (Spark, Postgres or simple Java)
Vorteile:
My tasks can be transferred between platforms with just minor changes
Nachteile:
Support for SQL would be really helpful
"Blossom enables data analysis over multiple data sources in a simple and transparent manner"
Vorteile:
Its ease of use and its robustness to pick the right data processing platforms.
Nachteile:
I believe that it is missing a SQL interface, which would add to the dashboard to run analytics simpler
Easy to use API to construct any dataflow task
Vorteile:
Easy to use API, makes the training of ML pipelines faster as it can run on distributed platforms such as Spark for example.
Nachteile:
Missing support of SQL queries, it would be useful to include this
Databloom is easy to learn and master
Vorteile:
It is surprising how easy is to configure Databloom and how easy I could setup my federated learning models
Nachteile:
For a few complex scenarios, the set up may require advanced acknowledge of federated learning concepts
Promising data platform
Vorteile:
Supports wide array of data processing platforms. Seamless data analytics across sources. Easy to integrate existing into existing applications
Nachteile:
Limited support for stream data analytics and graph data processing platforms.
El principal atractivo de Blossom es su facilidad de uso.
Kommentare: Pues se ha utilizado para realizar pruebas en el análisis de datos en diferentes sistemas de almacenamiento (polystore).
Vorteile:
La facilidad de uso, soporte de muchos sistemas de procesamiento de datos y su funcionalidad de Federated Learning.
Nachteile:
Aunque la interface básica es sencilla de utilizar se puede mejorar para poder hacer los dataflows, y otro punto es que se puede mejorar la documentación.
Antwort von databloom
vor 3 Jahren
Thank you for your review!
Gran sistema para la consulta de varios fuentes de datos a escala
Vorteile:
Facilidad para consultar fuentes de datos distribuidas, interfaz grafica intuitiva, eficacia en la consulta de datos, uso amigable del sistema.
Nachteile:
La documentación debería de mejorar, sobre todo en como soportar los casos de uso no tan comunes
Promising software
Vorteile:
Support for wide variety of data analytics platform was very useful.
Nachteile:
There is a a bit of learning curve involved .. the amount of functionality is a bit overwhelming. It would be helpful to provide some more on-ramp for each use case.